Covalent structure of human haptoglobin: a serine protease homolog.

نویسندگان

  • A Kurosky
  • D R Barnett
  • T H Lee
  • B Touchstone
  • R E Hay
  • M S Arnott
  • B H Bowman
  • W M Fitch
چکیده

The complete amino acid sequences and the disulfide arrangements of the two chains of human haptoglobin 1-1 were established. The alpha 1 and beta chains of haptoglobin contain 83 and 245 residues, respectively. Comparison of the primary structure of haptoglobin with that of the chymotrypsinogen family of serine proteases revealed a significant degree of chemical similarity. The probability was less than 10(-5) that the chemical similarity of the beta chain of haptoglobin to the proteases was due to chance. The amino acid sequence of the beta chain of haptoglobin is 29--33% identical to bovine trypsin, bovine chymotrypsin, porcine elastase, human thrombin, or human plasmin. Comparison of haptoglobin alpha 1 chain to activation peptide regions of the zymogens revealed an identity of 25% to the fifth "kringle" region of the activation peptide of plasminogen. The probability was less than 0.014 that this similarity was due to chance. These results strongly indicate haptoglobin to be a homolog of the chymotrypsinogen family of serine proteases. Alignment of the beta-chain sequence of haptoglobin to the serine proteases is remarkably consistent except for an insertion of 16 residues in the region corresponding to the methionyl loop of the serine proteases. The active-site residues typical of the serine proteases, histidine-57 and serine-195, are replaced in haptoglobin by lysine and alanine, respectively; however, aspartic acid-102 and the trypsin specificity, residue, aspartic acid-189, do occur in haptoglobin. Haptoglobin and the serine proteases represent a striking example of homologous proteins with different biological functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immobilization of Subtilisin Carlsberg on Modified Silica Gel by Cross-linking and Covalent Binding Methods

Proteases are important enzymes that their role in various industries is undeniable. However, keeping enzymes stable during its activity in harsh conditions is so important. In this study, protease enzyme was immobilized on the porous silica particles and its stability in different temperatures and pHs was evaluated. First silica particles were aminated by 3-aminopropyltriethoxysilane then the ...

متن کامل

Hemoglobin binding site and its relationship to the serine protease-like active site of haptoglobin.

Haptoglobin forms a stable, irreversible complex with hemoglobin. The H chain of haptoglobin, which is the subunit that binds hemoglobin, shows strong sequence homology with the serine protease family. This raises the question of whether hemoglobin binds to the protease-like active site pocket of H chain as the protease inhibitors do with serine proteases. This question can be tested by binding...

متن کامل

Tailored Ahp-cyclodepsipeptides as Potent Non-covalent Serine Protease Inhibitors.

The S1 serine protease family is one of the largest and most biologically important protease families. Despite their biomedical significance, generic approaches to generate potent, class-specific, bioactive non-covalent inhibitors for these enzymes are still limited. In this work, we demonstrate that Ahp-cyclodepsipeptides represent a suitable scaffold for generating target-tailored inhibitors ...

متن کامل

Engineering ecotin for identifying proteins with a trypsin fold.

Ecotin is a bidentate, fold-specific inhibitor of mammalian serine-proteases produced by Escherichia coli. This molecule may be engineered to increase and/or change its affinity and specificity providing significant biotechnological potential. Since ecotin binds tightly to serine proteases of the trypsin fold, it may help to identify the role of these enzymes in different biological processes. ...

متن کامل

Serine protease mechanism: structure of an inhibitory complex of alpha-lytic protease and a tightly bound peptide boronic acid.

The structure of the complex formed between alpha-lytic protease, a serine protease secreted by Lysobacter enzymogenes, and N-tert-butyloxycarbonylalanylprolylvaline boronic acid (Ki = 0.35 nM) has been studied by X-ray crystallography to a resolution of 2.0 A. The active-site serine forms a covalent, nearly tetrahedral adduct with the boronic acid moiety of the inhibitor. The complex is stabil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 77 6  شماره 

صفحات  -

تاریخ انتشار 1980